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ABSTRACT: We developed a regio- and stereocontrolled Dieckmann cyclization approach to the synthesis of a novel, natural-
product-like scaffold that was inspired from treprostinil (UT-15). This was further utilized in a diversity-based, 15-membered
macrocyclic synthesis of two different sets of hybrid compounds. The amino acid moiety embedded in the macrocyclic skeleton
allow exploring various chiral side chain groups within the ring.
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Treprostinil (UT-15, Figure 1, 1) is a synthetic drug with a
proven track record for the treatment of pulmonary

hypertension, a fatal lung disease.1−3 The design and synthesis
of this drug was achieved, initially by starting with prostacyclin
(PGI2, 2), which is a key physiological prostanoid.4,5

Prostacyclin (PGI2) is one of the major metabolic products
from arachidonic acid during the vasculature process and is
normally produced in endothelium and smooth muscles.6−12

PGI2 is a highly potent endogenous vasodilator in both
systemic and pulmonary circulation and is also known to inhibit

the platelet aggregation and adhesion.8,13−15 Because of the
limitations associated with PGI2 (i.e., short half-life etc.), the
synthesis efforts for obtaining a better compound eventually led
to reaching a successful drug, treprostinil!
With our growing interest16−25 in selecting the critical

fragments or scaffolds from natural products and other
bioactive compounds, and, their utilization in diversity-based
synthesis to obtain hybrid macrocycles, treprostinil caught our
attention. The presence of a tricyclic moiety with the
stereodefined functional groups was attractive to us, and, the
tricyclic scaffold of this nature (i.e., either cis- or trans-fused at
C-3a and C-9a) can be taken further for building a hybrid
macrocyclic toolbox. With this objective, shown in Figure 1 are
two tricyclic scaffolds 3 and 4 that we plan to synthesize and
they offer several unique features, such as (i) the presence of a
tricyclic moiety having a trans-fused six- and five-membered
rings at C3a and C-9a; (ii) the −OH group at C-2 in a five
membered ring can have a cis or trans relationship with the
benzylic hydroxyl at C-9 of a six membered ring; and (iii) the
carboxyl ester moiety at C-3 trans to hydroxyl at C-9. Using
either of these tricyclic scaffolds (3 and 4), our plan is to
explore building the macrocyclic diversity for producing a
diverse set of hybrid macrocycles, (for example, 5 and 6 from
3).
Our specific design and synthesis plans to building a 15-

membered ring, macrocyclic toolbox are shown in Scheme 1.
The first milestone is to develop the synthesis of two key
tricyclic scaffolds having an α- and β-OH groups at C-2 (see 9).
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Figure 1. Treprostinil-inspired, polycyclic scaffolds for building a
toolbox with different macrocycles.
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For example, using 9b (with β-OH at C-2), the plan is to carry-
out a stepwise acylation with the amino acid moiety at C-2 and
then acryloylation of −OH group at C-9. This would lead to
accessing a key precursor to test the ring closing metathesis as
the stitching reaction for obtaining a 15-membered ring (7).
Through the utilization of different amino acids in the acylation
step, one can obtain various side chains on the macrocyclic ring
as the diversity site. In a similar manner, using the −OH group
at C-9 for an acylation with the amino acid moiety, it would be
possible to obtain another type of a 15-membered macrocyclic
ring (8). The choice of the scaffolds (9 with α- or β-OH at C-
2) would allow building the macrocyclic rings having either
trans or cis relationships at C-2 and C-9. Finally, our plan to
obtain 10 as a precursor to 9 was centered around the regio-
and stereocontrolled Dieckmann cyclization utilizing 11 as the
key starting material. There are several examples in the
literature26−30 where Dieckmann reaction is commonly utilized
in the synthesis of bioactive natural products and related
analogs.
The synthesis of 10 was started from the phenolic derivative

12, which was synthesized by a Claisen rearrangement of 1-(3-
(allyloxy)phenyl) ethanone (see Scheme 2).31 Compound 12

was subjected to the phenolic hydroxyl protection followed by
the cross metathesis reaction for obtaining an α, β-unsaturated
carboxyl ester (13). It was then subjected to Michael addition
using sodium ethoxide (NaOEt in ethanol at −78 °C and a
dropwise addition of the starting material in THF) for
producing the bicyclic compound 14.32 To access a starting

material for testing the scope of the Dieckmann cyclization, 14
was further subjected to an enol ether alkylation conditions.
The use of potassium hexamethyldisilazane (KHMDS) at −78
°C gave 15 and 16 as the unseparable diastereomeric mixture in
6:1 diastereomeric ratio. It was then directly treated with
sodium borohydride to reduce the keto moiety at C-9. The
crude mixture obtained from this reduction was subjected to
−OTBS ether formation using triethyl amine as the base. At
this stage, the major product obtained after the flash column
chromatography was subjected to Dieckmann cyclization in the
presence of potassium tertiary butoxide.33 This reaction
produced 17 as a single diastereomer and, the purity of this
compound was confirmed by HPLC (>99%). As a test study,
this was further subjected to the carbonyl reduction with
NaBH4 giving two separable diastereomeric −OH groups at C-
2 (see 18 and 19). Both of them were thoroughly subjected to
extensive 1D and 2D NMR studies. The detailed structural
assignments are provided in the Supporting Information. In one
case, as shown in Figure 2, the X-ray crystal structure of 18

further confirmed the structural assignments. The two
stereodefined, natural product-like scaffolds, 18 and 19 can
serve as the starting material for further developing the 15-
membered macrocyclic diversity synthesis.
To our knowledge, the regio- and stereocontrolled Die-

ckmann cyclization approach to the synthesis of 17 from a
mixture of 15 and 16 is novel and merits a plausible explanation
(see Scheme 3). Assuming the carbonyl reduction at C-9 is
stereoselective giving 20 as the major isomer, this can lead to
several Dieckmann products as 17, 22a, 22b, and 22c. A
plaussible explanation is that first, a regioselective enol ether is
generated from the [b] site that is less sterically croweded
compared with the [a] site (see 20 and 21). Following an
intramolecular alkylation cyclization, this can lead the −COOEt
moiety in two orientations producing either 17 and/or 22a.
Once again, it appears that the trans (9a and 3a)-oriented
scaffold favors the orientation of the −COOEt moiety as the β-
position which is away from the core scaffold compared to an
α-site.
Having an access to both tricyclic scaffolds 18 and 19 in

sufficient amounts, we then decided to move forward with 15-
membered macrocyclic diversity synthesis plans. As shown in
Scheme 4, the hydroxyl group at C-2 was then acylated {1-
ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC), 4-di-
methylaminopyridine (DMAP} with three amino acid deriva-
tives giving 24 with R1 as the diversity site. In two steps that
included the TBS removal (under mild acidic conditions) and
further subjection to acryloylation provided the key starting
material 25 to test our crucial ring closing metathesis stitching
reaction. This metathesis-based cyclization34,35 worked-well in
all the three cases and this further validates the scope of this
type of macrocyclization giving a 15-membered ring on scaffold
(26). Because of an overlapping of signals in NMR, it was not
possible to assign the geometry across the double bond

Scheme 1. Plan to Obtain 15-Membered Ring, Hybrid
Macrocycles Using 9 (α- or β-OH Series) as the Key Starting
Material

Scheme 2. Regio- and Stereocontrolled Dieckmann
Cyclization Approach to Tricyclic Scaffold, 17

Figure 2. X-ray crystal structure of 18.
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although the ring closing metathesis gave a single isomeric
product. The synthesis details and full structural assignments of
all the compounds in this series are provided in the Supporting
Information. In one case, the 3D energy minimized structure of
a macrocyclic derivative with the reduced double bond is also
shown (see 27).
To explore the scope of other diastereoemeric tricyclic

scaffold, 19 having a cis relationship between the two hydroxyl
groups at C-2 and C-9, this was further utilized in the
macrocyclic synthesis. The synthetic steps to reaching this
objective are shown in Scheme 5. Compound 19 was subjected
to acryloylation giving 28 in a high yield. Following the removal
of the silyl group under mild acidic conditions, the free benzylic
−OH group was then acylated using three different N-alloc

protected amino acids giving the key precursor (29) to study
the 15-membered ring formation by a ring closing metathesis
stitching approach. As in the previous study, this reaction also
worked-well, and in all the three cases, macrocyclic ring was
obtained (see 30). The reaction appears to independent of the
stereochemistry of -O-acryloyl group at C-2 and with the choice
of different amino acid moieties utilized for acylation at C-9.
The olefin was not assigned due to overlapping signals in NMR.
To obtain some insight information about the nature of the 15-
membered ring, in one case, the reduced derivative was also
subjected to 3D energy minimization studies (see 31). As
before, the detailed synthesis and products characterization are
provided in the Supporting Information.
To summarize, we report a regio- and stereocontrolled

Dieckmann cyclization approach for obtaining natural product-
like scaffolds, 18 and 19 that were further utilized in a diversity
synthesis to build a different set of macrocyclic compounds. To
our knowledge, the Dieckmann approach reported here is novel
for obtaining this type of stereodefined scaffold, and, this can
also lead to the synthesis of enantiomerically pure version of
the racemic tricyclic scaffolds, 18 and 19. Work is in progress in
this direction! In addition, the biological studies with the use of
our chemical toolbox reported herein are ongoing to search for
novel small molecule modulators of protein−protein inter-
actions36−39 and selected signaling pathways,40−45 and will be
reported when available.
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